UNCLASSIFIED

Research, Development and Engineering Division

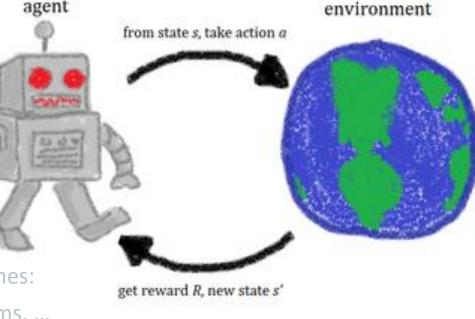
Towards Self-Learning Self-Driving Vehicle:

reinforcement learning system for autonomous driving

Dr. Refael Vivanti

What is Reinforcement Learning

- Learning from self-experience.
- RL can learn:
 - Unknown game rules
 - Delayed rewards, no supervision
 - Actions affect the environment
- Recent achievements:
 - Superhuman performance in many games:
 - Chess, Go, Atari games, Control problems, ...



What is Reinforcement Learning

- Learning from self-experience.
- RL can learn even if:
 - Unknown game rules
 - Delayed rewards, no supervision
 - Actions affect the environment

- Recent achievements:
 - Superhuman performance in many games:
 - Chess, Go, Atari games, Control problems, ...

The mission

- Teach a vehicle to drive in a specific off-road area.
 - Will be tested in the training area only.
- Supervised Learning Requires large annotated datasets.
- Physical RL is too slow and unsafe
- Solution: Copy-Paste the environment!
 - realistic 3D modelling from aerial images
 - RL Training inside the model
 - Bonus: driving in currently un-approachable areas.

The mission

- Teach a vehicle to drive in a specific off-road area.
 - Will be tested in the training area only.
- Supervised Learning Requires large annotated datasets.
- Physical RL is too slow and unsafe
- Solution: Copy-Paste the environment!
 - realistic 3D modelling from aerial images
 - RL Training inside the model
 - Bonus: driving in currently un-approachable areas.

The mission

- Teach a vehicle to drive in a specific off-road area.
 - Will be tested in the training area only.
- Supervised Learning Requires large annotated datasets.
- Physical RL is too slow and unsafe
- Solution: Copy-Paste the environment!
 - realistic 3D modelling from aerial images
 - RL Training inside the model
 - Bonus: driving in currently un-approachable areas.

Ref .:

3D Model of the training area

The challenge

- Driving involves two tasks: Navigation and Avoidance
 - Both affect location and pose -

Navigation – Path planning	Obstacle avoidance
strategical task	tactical task
sparse rewards	dense rewards
geometric input	visual input

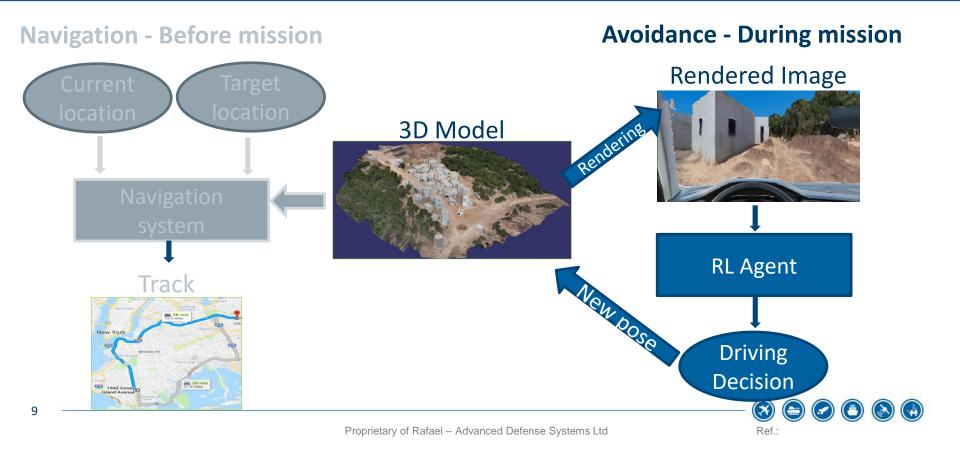
Navigation

Avoidance

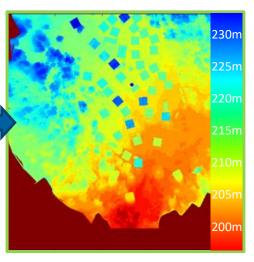
• Doing both together is hard

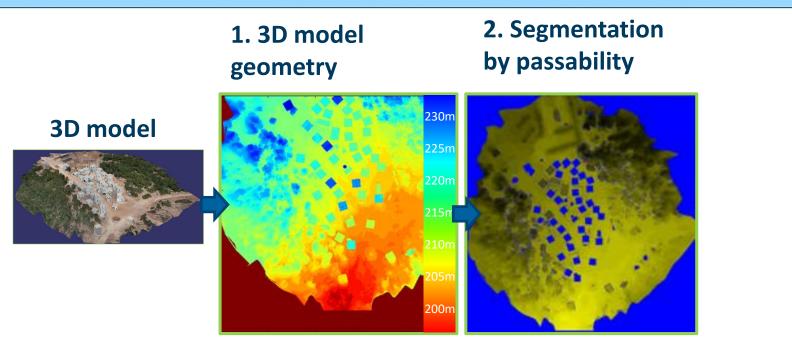
Our Solution: split

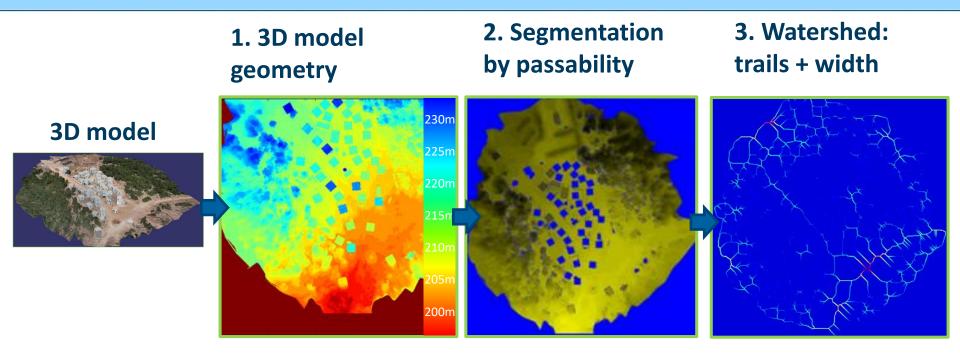
Our Solution: split



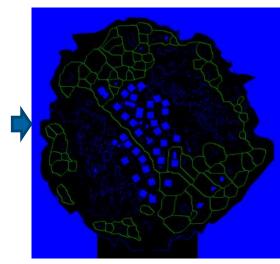
1. 3D model geometry

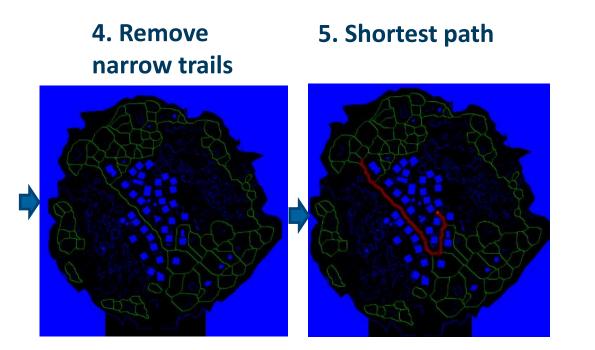


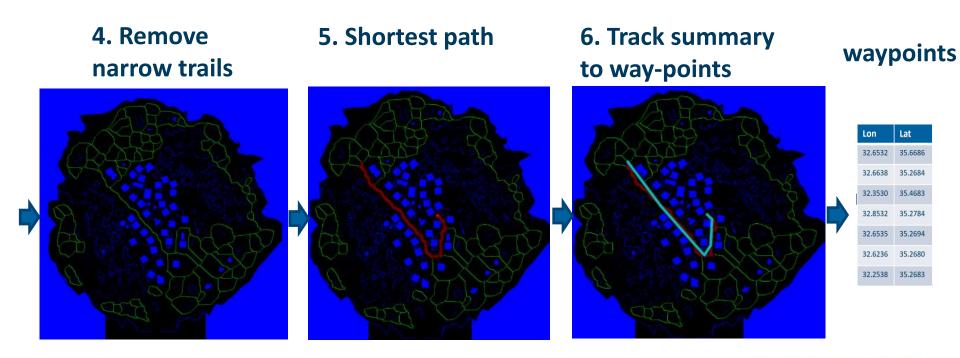




4. Remove narrow trails







Proprietary of Rafael - Advanced Defense Systems Ltd

• In each driving step:

- The model is rendered to the agent location
- The agent pose is such that the next waypoint is always in front of it.
- The agent uses the rendered image to avoid obstacles, while "unknowingly" progress towards the target.

- In each driving step:
 - The model is rendered to the agent location
 - The agent pose is such that the next waypoint is always in front of it.
 - The agent uses the rendered image to avoid obstacles, while "unknowingly" progress towards the target.

- In each driving step:
 - The model is rendered to the agent location
 - The agent pose is such that the next waypoint is always in front of it.
 - The agent uses the rendered image to avoid obstacles, while "unknowingly" progress towards the target.

- In each driving step:
 - The model is rendered to the agent location
 - The agent pose is such that the next waypoint is always in front of it.
 - The agent uses the rendered image to avoid obstacles, while "unknowingly" progress towards the target.

• Compared 3 SOTA Actor-Critic based RL algorithms:

- PPO Proximal Policy Optimization

Schulman J. et al. "Proximal policy optimization algorithms." arXiv:1707.06347 2017

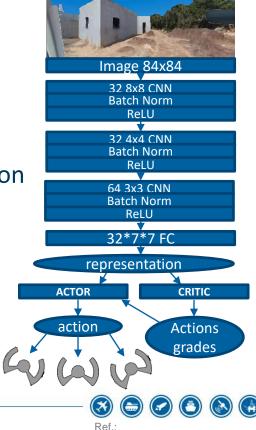
- A2C Advantage Actor Critic

Mnih V. et al. Asynchronous methods for deep reinforcement learning. ICML2016

- ACKRT Actor Critic using Kronecker-factored Trust Region

Wu Y. et al. Scalable trust-region method for deep reinforcement learning using kronecker-factored approximation. NIPS2017

- Sharing convolutional layers between actor and critic
 - The joint network learns image representation
 - Actor and critic each use the representation differently
 - Both are 1 Fully Connected layer



- Compared 3 SOTA Actor-Critic based RL algorithms:
 - PPO Proximal Policy Optimization

Schulman J. et al. "Proximal policy optimization algorithms." arXiv:1707.06347 2017

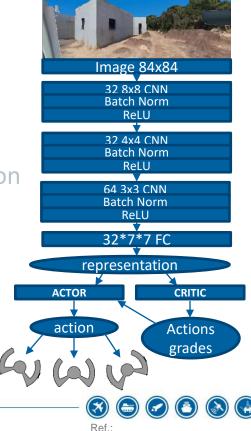
- A2C Advantage Actor Critic

Mnih V. et al. Asynchronous methods for deep reinforcement learning. ICML2016

- ACKRT Actor Critic using Kronecker-factored Trust Region

Wu Y. et al. Scalable trust-region method for deep reinforcement learning using kroneckerfactored approximation. NIPS2017

- Sharing convolutional layers between actor and critic
 - The joint network learns image representation
 - Actor and critic each use the representation differently
 - Both are 1 Fully Connected layer



• Random tracks:

- New track every game
- Random obstacles:
 - Same street, new parking cars
- Multi-process:
 - parallel games, one agent

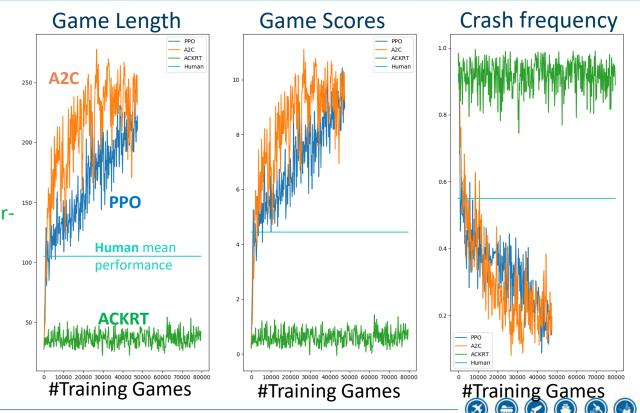
- Random tracks:
 - New track every game
- Random obstacles:
 - Same street, new parking vehicles
- Multi-process:
 - parallel games, one agent

- Random tracks:
 - New track every game
- Random obstacles:
 - Same street, new parking cars
- Multi-process:
 - parallel games, one agent

Results

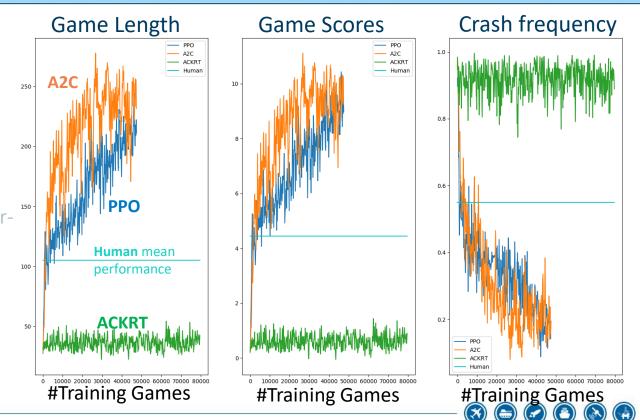
• **PPO**

- Proximal Policy Optimization
- A2C
 - Advantage Actor Critic
- ACKRT
 - Actor Critic using Kroneckerfactored Trust Region
- Mean Human
- Early Super-human performance
- Volatile vs Monotonic



Results

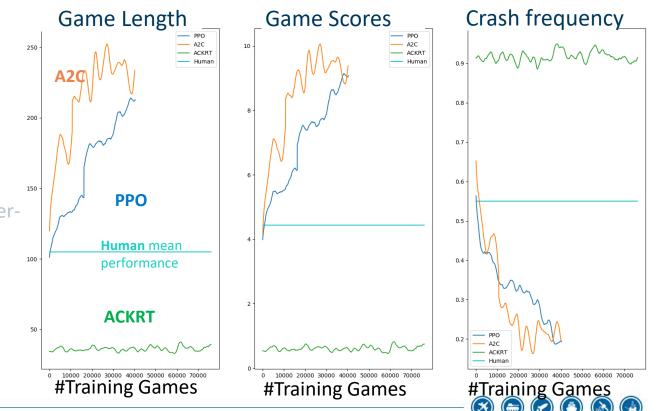
- PPO
 - Proximal Policy Optimization
- A2C
 - Advantage Actor Critic
- ACKRT
 - Actor Critic using Kroneckerfactored Trust Region
- Mean Human
- Early Super-human performance
- Volatile vs Monotonic



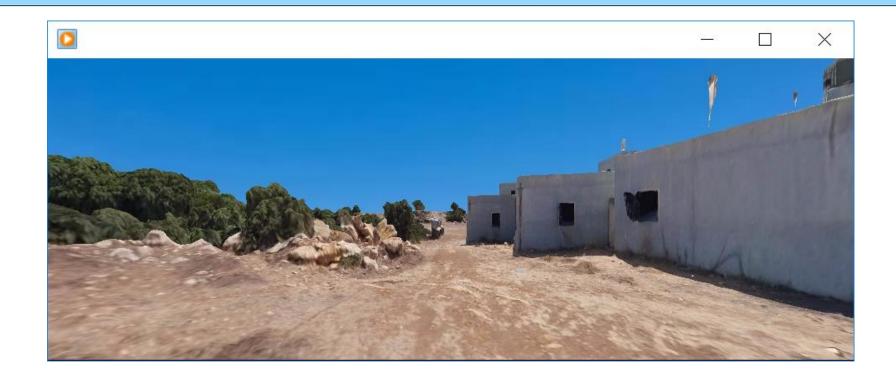
Results

• PPO

- Proximal Policy Optimization
- A2C
 - Advantage Actor Critic
- ACKRT
 - Actor Critic using Kroneckerfactored Trust Region
- Mean Human
- Early Super-human performance
- Volatile vs Monotonic



Test drive



Limitations

- Moving obstacles
- Traffic rules
- Steering to movement direction
- Blocking obstacles
- No U turns

Future work

- Treating limitations
- GANs for even more realistic images
 - To look like current reality
 - Add rain, mud, darkness, fog, and dust
- Control Learning
 - Copy-Paste the vehicle behaviour
- Driving a real platform
 - Test in the modelled area

Future work

- Treating limitations
- GANs for even more realistic images
 - To look like current reality
 - Add rain, mud, darkness, fog, and dust
- Control Learning
 - Copy-Paste the vehicle behaviour
- Driving a real platform
 - Test in the modelled area

Future work

- Treating limitations
- GANs for even more realistic images
 - To look like current reality
 - Add rain, mud, darkness, fog, and dust
- Control Learning
 - Copy-Paste the vehicle behaviour
- Driving a real platform
 - Test in the modelled area

UNCLASSIFIED

Research, Development and Engineering Division

RAFAEL

THANK YOU

www.rafael.co.il